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LETTER TO THE EDITOR 

Quenching of the Aharonov-Bohm oscillations in variable cross 
section geometries 

M Ya Azbeltt  and 0 Entin-Wohlman$§ 
t Laboratoire de Physique des Solides, Universitk de Paris-Sud, 91405 Orsay, France 
I D. Tech/SRMP, C E N  Saclay, 91191 Cif-sur-Yvette, France 

Received 10 July 1989 

Abstract. The electronic spectrum of an infinite quasi-one-dimensional disorder-free system, 
of varying width, is considered. It is shown that as a result of the varying width, the 
spectrum includes extended states as well as states which are exponentially decaying. The 
effect of magnetic fields is considered and criteria for the weak and strong field regimes 
are derived. I t  is shown that the amplitude of the Aharonov-Bohm oscillations in multiply- 
connected systems can be exponentially small due to the spatial confinement of the 
probability density. Physical implications for mesoscopic samples are discussed. 

There is currently considerable interest in the electronic properties of low-dimensional 
and mesoscopic structures. Interference effects have been studied in great detail (Imry 
1986, Washburn and Webb 1986) and particular attention has been paid to magnetic-flux 
effects in multiply connected conductors (Aronov and Sharvin 1987). The theoretical 
considerations are usually made for ideally shaped geometries, e.g. strictly one- 
dimensional rings or cylinders, or rectangular long wires of constant width. It is rather 
obvious, however, that experimental samples are seldom of such perfect shapes. One 
expects that a real wire will possess a small degree of width variation or curvature, 
and that a fabricated ring will not be a perfect circle. The random roughness of a 
sample surface is usually included in the general treatment of disorder effects. This 
is not the case for a smooth regularly-shaped surface. These types of surfaces a.nd 
boundaries have a profound effect upon the electronic spectrum of a low-dimensional 
sample. It is thus conceivable that experiments designed to test theoretical predictions 
based upon ideally shaped structures will fail to exhibit those predictions, not for 
conventional reasons such as finite-temperature and disorder effects (including surface 
scattering), but because the fabricated samples are of ‘non-perfect’, though regular, 
geometries. 

In this letter we address the question of the electronic wavefunctions and energy 
spectrum of such structures. We include the effect of a constant magnetic field, and 
derive criteria for the field strength. In particular, we discuss the Aharonov-Bohm 
effect (Aharonov and Bohm 19=.’) of multiply connected geometries in the weak-field 
regime. 

In a multiply connected layer, the wavefunction is obviously periodic with the 
longitudinal coordinate, the period being the perimeter L. Thus, quantum states are 
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the Bloch ones. We demonstrate that when L is large compared with the (varying) 
shell width, the Bloch effective mass and bandwidth decrease exponentially with L. 
When L +  00 (and the system of an infinite period is a non-periodic one), the electronic 
spectrum of a system, which is free of disorder, consists of exponentially decaying 
‘localised’ states and extended states, with a multitude of ‘mobility edges’ separating 
them. 

The spectrum is characterised by two quantum numbers, one referring to the 
coordinate along the sample and the other related to the transverse coordinate. The 
latter quantum number, n, divides the spectrum into ‘bands’. States in the lowest band 
( n  = 1) are localised up to the mobility edge of the first band, above which they are 
extended. States in the second band are localised below the mobility edge of the 
second band, and extended above it, and so on for higher n values. The widths of 
the localised state bands depend upon the ratio of the system cross section size to its 
length and generally increase as this ratio tends to zero. Thus, below a certain Fermi 
energy (i.e. below a certain critical electron concentration) all states will be localised. 
An increase in E F  leads to an insulator-metal transition at the first mobility edge E l ,  
and thence to metallic conductivity. Further mobility edges yield jumps (c.f. van Wees 
et a1 1988, Wharam et a1 1988, Glazman et a1 1988) in the density of extended states. 
Of the many implications inferred by this conclusion, we dwell in the following upon 
the Aharonov-Bohm oscillations in narrow rings and show that their amplitude tends 
exponentially to zero below the first mobility edge. 

A possible starting point would have been to consider the Schrodinger equation 
of a long wire (along the x direction) of a small cross section which is some function 
of x. However, a two-dimensional elliptic shell is more attractive, as it involves an 
orthogonal set of coordinates, allowing for explicit analytical solutions. That is why, 
for the sake of simplicity, we confine ourselves to the discussion of an elliptic shell 
threaded by a magnetic field H. 

The Schrodinger equation in elliptic coordinates (x = d(cosh 0 cos 4 ) ,  y = 
d(sinh 0 sin 4 ) )  is 

{ [ d  i ( d ) 2  - s i n 2 4  1’ + [ d i ( d ) 2  - sinh20 l 2  
a0 2 Lo d 4  2 Lo 

+ ( kd)’(sinh2 0 + sin2 4) $( 0, 4 )  = 0 (1) 

where the energy is related to k 2 ,  E = h2k2/2m, and Lo is the magnetic length, 
Li = 2hc/eH. Substituting for the wavefunction the form 

I 
$ = exp{ [ 2 (”)’sinh Lo 200] 4 }  exp{ [’ 2 (A)2  Lo sin 2 4 1  ( 0  - Oo)}@ (2) 

and introducing the transverse coordinate z along the shell width 

0 = o o +  vz O S Z S l  (3) 
we obtain the Schrodinger equation in the simple form 

where we have denoted f( 4 )  = cosh2 Oo - cos’ 4. In deriving (4) we have kept terms 
to order z and neglected 7z(d2/2)  sinh(20,) compared to d 2 f ( 4 ) .  The parameter 17 
measures the ratio of the sample width to its length: denoting the inner axes of the 
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shell by a = d(cosh e,) and b = d(sinh e,,), respectively, and the outer axes by a +Aa 
and b +Ab,  respectively, we find 7 - Ab/ a - Aa/  6, i.e. 77 is very small for a thin shell 
or when the perimeter is very long. Thus the system becomes one-dimensional in the 
77 + 0 limit. 

Consider first the solutions in the absence of the field. The wavefunction becomes 
@(z ,  4 )  = R ( z ) F ( 4 ) .  Applying the boundary conditions R(0)  = R ( l )  = 0 ,  we obtain 
R (  z )  = sin( m z )  and the following equation for F (  4 ) :  

[ 7 7 2 d 2 / d 4 2 + q ( 4 ) l F ( 4 )  = o  
( 5 )  

d 4 )  = ( ? ? k 4 2 f ( 4 ) - ( 4 2  n = 1 ,2 , .  . . . 
This is the Mathieu equation (Morse and Feshbach 1953). Equation ( 5 )  is of the same 
form as the Schrodinger equation, with 77 playing the role of the Planck constant. We 
consider a Bloch situation: F (  4 + n-) = exp( id )F (+) ,  where 1 is an integer. Below 
the potential barrier top ( m / V a  < k < m / V b ) ,  because -qmi,,/r]’ >> 1 ,  the Bloch spec- 
trum corresponds to the tight-binding picture. Then F decays exponentially in the 
classically forbidden regions -dl < 4 < 41, 42 < 4 < 7~ + 41, where q( 41) = q ( d 2 )  = 0. 
For example, for 0 < 4 < 41, 

The spectrum is determined by 

J o  

i.e., the Bloch bandwidth and the Bloch effective mass are exponentially small as 77 + 0. 
At k >  m / v b  the classical orbits extend over all 4 (‘classical’ mobility edge). 

When 1 k - .rrn/Tbl - 7, the spectrum is very complicated, but this region vanishes as 
77 + 0. When I k - m/ Tbl>> 77, 

and the spectrum is given by 

1; ld4)11/2 d 4  = 77d ( 9 )  

leading to k 2 = 2 [ ( n n / ~ ) 2 + 1 2 ] / ( a 2 +  b 2 )  in the b >> m / T k  limit. 
Since 7 a L-’ ( L  is the ellipse perimeter), the picture that emerges from equations 

(6)-(9) is similar to the Anderson localisation. All Bloch states are of course extended, 
but at k < n-n/ v b  the probability density decreases exponentially with the distance 
from the ‘localisation regions’ 4,  < 4 < 4 2 ,  -42 < 4 < - 4 , .  When L +  CO, the band- 
width becomes proportional to exp{-L/[} + 0, [ being provided by (6). Hence, starting 
at low energies, the states characterised by n are localised up to the mobility edge at 
k2  - (nrr/ Vb)’, while the states belonging to n - 1 ,  n - 2, . . . are extended. Above this 
energy the states corresponding to n also become extended, up to an energy of the 
order k 2 -  [ ( n  + 1)v/77aI2 above which states belonging to n + 1 are localised. The 
width of the localised state bands is of the order ( n d / T a b ) 2 ,  increasing as 77 tends to 
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zero, while the gaps in between are of the order [ ( n +  l ) / q ~ ] ’ - ( n / q b ) ~  (as long as 
this quantity is positive). 

Next we turn to the effect of a magnetic field. One notes from (4) that in the 
small-7 limit the magnetic field is considered to be weak when 7(d /Lo)*  is smaller 
than unity and  becomes stronger as this quantity increases. This means that as long 
as the magnetic length is much longer than d f i ,  the magnetic field term in (4) is small 
and  can be handled by perturbation theory. In this regime the main effect of the 
magnetic field is brought about by the first phase factor in (2). This phase factor can 
be rewritten in the form exp( i4N) ,  where N is the magnetic flux inside the elliptic 
shell, divided by the flux quantum unit qbo, N = (d2/2Li )  sinh 2 0 0 =  HS/&,.  Here S 
is the area contained inside the inner curvature of the shell, S = Tab. For higher fields 
such that (7d/Lo)’ is finite, i.e. the magnetic length is of the order of the shell width, 
perturbative treatment of (4) is invalid. In this regime there appear magnetic ‘edge’ 
states (Dingle 1953, Prange a n a  Nee 1968). The investigation of the electronic spectrum 
and magnetic properties pertaining to this case will be presented elsewhere. In the 
following we concentrate upon the weak-field regime. 

When the field is weak enough so that 7 ( d / L o ) * < 1 ,  then to lowest order the 
wavefunction solving (4) can still be written as @ ( z ,  4 )  = R ( z ) F ( 4 ) ,  with F ( 4 )  satisfy- 
ing ( 5 ) .  However, the periodicity condition imposed on the wavefunction + is modified 
by the phase factor exp( i4N)  (see (2)). Consequently, the eigenvalue equations are 
modified as well, with 1 in (7) and  (9) replaced by ( N  - I ) .  The magnetic-field effect 
upon the extended states (9) is the same as that found in strictly one-dimensional 
treatments of multiply connected systems (Gunther and  Imry 1969, Buttiker et al 1983, 
1984, Landauer and  Buttiker 1985, Cheung et a1 1988), leading to the Aharonov-Bohm 
oscillations (of unit amplitude) and persistent normal currents. However, for the 
low-lying energy states which are localised and  correspond to an  insulator, the 
Aharonov-Bohm effect decreases exponentially ((6) and (7)). 

Our approach is readily generalised to other geometries, e.g. a three-dimensional 
wire, or arbitrarily varying (regularly or randomly) cross sections. In all cases the 
transverse momentum quantisation (of order w-’ ,  where w is the characteristic width) 
leads at the bottom of each band to the ‘ballistic’ localisation length 6% - w m ,  
6w being a measure for the width variance. Any fixed width (or thickness) variation 
6w (at zero temperature) will lead to the probability density p of the ground state (and 
adjacent states) which decays exponentially as the length L tends to infinity, In p - 

In  summary, an  infinite quasi-one-dimensional system (even without disorder, but 
with regularly changing cross section) which has a sufficiently low bulk Fermi energy, 
EF, will exhibit characteristics of strong localisation (like the metal-insulator transi- 
tion), jumps in the density of extended states, etc. The peculiar features of the spectrum 
may be most conveniently probed by observing the effect of a magnetic field, which 
can be also used to tune the Fermi energy. 

This work was supported in part by the Fund for Basic Research administered by the 
Israel Academy of Sciences and  Humanities, and by the R and  J Meyerhoff chair. 
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